DEVELOPMENT OF MIX DESIGN AND STRUCTURAL DESIGN PROCEDURES FOR COLD IN-PLACE RECYCLING

Pavement Engineering and Science Program
University of Nevada, Reno

Progress – Update
October 26, 2016
Experimental Program

<table>
<thead>
<tr>
<th>RAP</th>
<th>Emulsion</th>
<th>Slurry Level</th>
<th>Mix Design</th>
<th>M-E Design</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Superpave</td>
<td>Hveem</td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>4.5</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.0</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>4.5</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.0</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>4.5</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.0</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>4.5</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.0</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Non-Grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>4.5</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.0</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>4.5</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.0</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>4.5</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.0</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>4.5</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.0</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

4.5 = 1.5%HL + 3%W
6.0 = 2%HL + 4%W

E* = Dynamic Modulus
RC = Reflective Cracking
Fn = Flow Number
FC = Fatigue Cracking

www.wrsc.unr.edu
Superpave Mix Design

- Air voids: 13±1%
- Identify N_{design}
- Identify OEC
- Check:
 - Moisture Sensitivity
 - Raveling
 - Cohesion
RAP Gradation

Graded RAP:
- PCCAS medium gradation

Non-Graded RAP:
- 100% passing 1.5” (NDOT)
Samples Fabrications

- RAP material: whole barrel
- Crush RAP: aggregate crusher
- Shovel mix the RAP, ensuring uniform distribution

- Oven dry RAP at 140°F, until constant mass (24-48 hours)
- Graded mixture
 - Sieve according to PCCAS
- Non-Graded mixture
 - Quarter using Splitter
 - Batch
 - Batch
Identify \(N_{\text{design}} \)

- Emulsion content: 3.0%
- Compact to 100 gyrations
- Measure Theoretical Maximum (\(G_{\text{mm}} \)) & Bulk Specific (\(G_{\text{mb}} \)) Gravities
- Identify the number of gyrations:
 - Height: 115±5mm
 - Air voids (%AV): 13±1%
Number of SGC Gyrations

Graded RAP - Emulsion type B - 6.0% Slurry Lime

Average Height: 115.0 mm
Average Air voids: 12.6%

70 Gyrations
Number of SGC Gyrations

Non-Graded RAP - Emulsion type B - 6.0% Slurry Lime

Average Height: 117.3 mm
Average Air voids: 13.5%

100 Gyrations

Sample 1 Sample 2 Sample 3
Identify Optimum Emulsion Content

- Mix samples at: 2.5, 3.0, 3.5, and 4.5% emulsion

- Lime slurry: 4.5% and 6.0%

- Measure G_{mm} at 3.0% and calculate at others

- Compact to N_{design} and measure G_{mb}

- Identify OEC:
 - %AV and Height
Effective Specific Gravity

Average G_{se}
Optimum Emulsion Content (OEC)

Graded RAP - Emulsion type B - 6.0% Slurry Lime – 70 Gyrations

y = 0.008x^2 - 0.0691x + 0.267

R² = 0.8943

3.1% OEC
Non-Graded RAP - Emulsion type B - 6.0% Slurry Lime – 100 Gyrations

Optimum Emulsion Content (OEC)

Air Voids vs. Emulsion Content

Height vs. Emulsion Content

\[y = 0.0029x^2 - 0.0311x + 0.1975 \]

\[R^2 = 0.8981 \]

3.0% OEC
Samples Acceptance Criteria

• Additional Samples are Compacted if:
 – Repeatability of the G_{mb} does not meet:
 ▪ Standard Deviation d_{2s}
 ▪ Maximum Difference
 – The Fit of the data is unacceptable
 ▪ $R^2 < 0.75$
Superpave Mix Designs

<table>
<thead>
<tr>
<th>Emulsion</th>
<th>Lime (%)</th>
<th>Aggregate</th>
<th>Air Voids (%)</th>
<th>OEC(%)</th>
<th>R^2</th>
<th>No. of Gyration</th>
<th>No. of Samples</th>
<th>Cohesion (hrs)</th>
<th>Raveling (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.5</td>
<td>Graded</td>
<td>13.0</td>
<td>3.4</td>
<td>0.90</td>
<td>100</td>
<td>8</td>
<td>4.5</td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non graded</td>
<td>13.0</td>
<td>3.6</td>
<td>0.89</td>
<td>100</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>Graded</td>
<td>13.0</td>
<td>3.0</td>
<td>0.93</td>
<td>100</td>
<td>8</td>
<td>5.5</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non graded</td>
<td>13.0</td>
<td>4.0</td>
<td>0.92</td>
<td>100</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>4.5</td>
<td>Graded</td>
<td>13.0</td>
<td>3.8</td>
<td>0.92</td>
<td>85</td>
<td>9</td>
<td>9</td>
<td>11.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non graded</td>
<td>13.0</td>
<td>4.0</td>
<td>0.72</td>
<td>100</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>Graded</td>
<td>13.0</td>
<td>3.1</td>
<td>0.89</td>
<td>70</td>
<td>9</td>
<td>8.5</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non graded</td>
<td>13.0</td>
<td>3.0</td>
<td>0.90</td>
<td>100</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4.5</td>
<td>Graded</td>
<td>13.0</td>
<td>2.9</td>
<td>0.88</td>
<td>80</td>
<td>8</td>
<td>5.5</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non graded</td>
<td>13.0</td>
<td>3.3</td>
<td>0.88</td>
<td>100</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>Graded</td>
<td>13.0</td>
<td>2.5</td>
<td>0.79</td>
<td>75</td>
<td>9</td>
<td>6.5</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non graded</td>
<td>13.0</td>
<td>2.5</td>
<td>0.77</td>
<td>100</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>4.5</td>
<td>Graded</td>
<td>13.0</td>
<td>3.0</td>
<td>0.73</td>
<td>60</td>
<td>11</td>
<td>4.5</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non graded</td>
<td>13.0</td>
<td>3.9</td>
<td>0.88</td>
<td>100</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>Graded</td>
<td>13.0</td>
<td>3.5</td>
<td>0.78</td>
<td>65</td>
<td>8</td>
<td>5.5</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non graded</td>
<td>13.0</td>
<td>4.0</td>
<td>0.83</td>
<td>100</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Some Trends

- All Non Graded Mixtures Required $N = 100$

- Graded Mixtures $N = 70 - 85$ (D: 60-65)

- Number of Required Samples Higher for Non Graded Mixtures

- Optimum Emulsion Content Higher for Non Graded
Next Task: Hveem Mix Design

- Air Voids: 13±1%
- Identify Leveling Load
- Identify OEC
- Check:
 - Moisture Sensitivity
 - Raveling
 - Cohesion
Identify Number of Tamps

- Emulsion content: 3.0%
- Compact to 150 tamps
- Measure G_{mm} and G_{mb}
- Identify the leveling load:
 - Height: 2.5±0.1 inch
 - Air voids (%AV): 13±1%
Identify Optimum Emulsion Content

- Mix samples at: 2.5, 3.0, 3.5, and 4.5% emulsion
- Lime slurry: 4.5% and 6.0%
- Measure G_{mm} at 3.0% and calculate at others
- Compact and apply leveling load: measure G_{mb}
- Identify OEC:
 - %AV and Height
Hveem Mix Designs

<table>
<thead>
<tr>
<th>Emulsion</th>
<th>Slurry Lime (%)</th>
<th>Aggregate</th>
<th>Air Voids (%)</th>
<th>OEC(%)</th>
<th>R²</th>
<th>Leveling Load (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.5 Graded</td>
<td>13.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>4.5 Non graded</td>
<td>13.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>6.0 Graded</td>
<td>13.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>6.0 Non graded</td>
<td>13.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>4.5 Graded</td>
<td>13.0</td>
<td>3.5</td>
<td>0.89</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>4.5 Non graded</td>
<td>13.0</td>
<td>3.8</td>
<td>0.74</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>6.0 Graded</td>
<td>13.0</td>
<td>3.2</td>
<td>0.91</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>6.0 Non graded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4.5 Graded</td>
<td>13.0</td>
<td>3.0</td>
<td>0.88</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4.5 Non graded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>6.0 Graded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>6.0 Non graded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>4.5 Graded</td>
<td>13.0</td>
<td>3.5</td>
<td>0.94</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>4.5 Non graded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>6.0 Graded</td>
<td>13.4</td>
<td>4.0</td>
<td>0.93</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>6.0 Non graded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thank You!