Effectiveness and Timing of Preventive Maintenance

2016 Pacific Coast Committee on Asphalt Specifications
Seattle, May 11, 2016

Peter E. Sebaaly, PhD, PE
Director
Western Regional Superpave Center
University of Nevada Reno (UNR)
WHAT IS OLD?

Evaluate *effectiveness* & *optimum time* for *single* application of slurry seal

Evaluate *effectiveness* & *optimum time* for *sequential* application of slurry seal
WHAT IS NEW?

- Evaluate the long-term performance of Cape Seals:
 - Slurry Seal
 - Micro-surfacing
Phase I: Slurry Seal *Performance Life* & *Extension in Pavement Service Life*

Graph Description:
- *New Construction* (green line)
- *Slurry Seal at year 3* (red dotted line)
- *Slurry Seal at year 7* (blue dashed line)

Key Observations:
- **Performance Life ~ 2 yrs**
- **Performance Life ~ 3 yrs**
- **Extension in Pavement Service Life ~ 2 yrs**

PCI vs. *Age in Years* chart
Phase I: SS Performance Life & Extension in Pavement Service Life

- In general, performance life ranged between 2 & 4 years.
 - Except when slurry seal was applied at year 0 and 1, performance life ranged from 0 to 1 year.

- Except few cases, the pavement service life was not extended by application of the single slurry seal.
Phase I: Slurry Seal Effectiveness

Overlay (Do Nothing)

Slurry Seal

Relative Benefit = \(100 \times \frac{B}{B_0}\)

Benefit Cost Ratio = \(\frac{B}{C}\)
Phase I: Effectiveness Analysis – New Construction
Phase I: Effectiveness Analysis – Overlay

Graphs showing:
- Benefit vs. Year of Slurry Seal Application for OL-Arterial (A), OL-Collector (B), and OL-Residential (C)
- Relative Benefit vs. Year of Slurry Seal Application for OL-Arterial (A), OL-Collector (B), and OL-Residential (C)
- Benefit-Cost Ratio vs. Year of Slurry Seal Application for OL-Arterial (A), OL-Collector (B), and OL-Residential (C)
Phase I: Conclusion

- Application of SS *immediately* or *one year after* construction of asphalt layer is not effective in terms of:
 - the benefit to the users and
 - the benefit-cost ratio for the agency.

Optimum time for application of a *Single Slurry Seal*:
- Newly constructed pavements: 3 years after construction.
- Pavements subjected to overlays: 3-5 years after construction.
Phase II: *Newly Constructed* Pavements:
1st SS at year 3, 2nd SS at year 7
Phase II: Slurry Seal Effectiveness

Relative Benefit = 100 × B / B₀

Benefit-Cost Ratio = B / C

Pavement Condition Index (PCI)

Age in Years

University of Nevada Reno, www.wrsc.unr.edu
Phase II:

Effectiveness
PHASE II: Conclusions

- Application of first SS immediately or one year after construction is not effective in terms of both the benefit to users and benefit cost ratio for the agency.

- Regardless of construction activity, optimum time for a sequential slurry seal is when first SS is applied in year 3 & second SS is applied in year 7 (i.e. 4 years after the application of the first SS)
OVERALL RECOMMENDATION

For both new and overlay constructions, it is recommended that the agency applies

First slurry seal 3 years after the construction of the asphalt layer and the second slurry seal 7 years after the construction.
CAPE SEALS: Slurry or Micro

Chip Seal

- Asphalt Concrete
- Base
- Subgrade

Slurry or Micro

- Asphalt Concrete
- Base
- Subgrade
WHY CAPE SEALS

- Snow-Plow Damage
- Chip Loss
- Quieter
- Longer Life
Chip Seal
Chip Seal
Cape Seal: Slurry Seal
Cape Seal: Microsurfacing
Evaluated Sections

<table>
<thead>
<tr>
<th>Age (Service Life)</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Roadways</td>
<td>2</td>
<td>9</td>
<td>3</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Number of Sections</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>21</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location/Environment</th>
<th>11</th>
<th>3</th>
<th>4</th>
<th>3</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incline Village</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>Reno/Sparks</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>13</td>
<td>28</td>
</tr>
<tr>
<td>Gerlach</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Traffic</th>
<th>A - Arterial</th>
<th>B - Collector</th>
<th>C - Residential</th>
<th>D – Industrial</th>
<th>E – Rural Hwy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Location/Environment</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>Reno/Sparks</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Gerlach</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surface Type</th>
<th>Micro-Surfacing</th>
<th>Slurry Seal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - Arterial</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>B - Collector</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>C - Residential</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>D – Industrial</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>E – Rural Hwy</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

22
Performance Data

![Graph showing Performance Data over years for DST-SS and DST-MS sections.](image-url)
Emulsions Grades

<table>
<thead>
<tr>
<th>Year</th>
<th>Chip Seal</th>
<th>Slurry Seal</th>
<th>Micro-surfacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>PASS/LMCRS</td>
<td>LMCQS</td>
<td>N/A</td>
</tr>
<tr>
<td>2001</td>
<td>PASS</td>
<td>LMCQS</td>
<td>N/A</td>
</tr>
<tr>
<td>2002</td>
<td>PASS</td>
<td>LMCQS</td>
<td>N/A</td>
</tr>
<tr>
<td>2006</td>
<td>LMCRS</td>
<td>N/A</td>
<td>LMCQS</td>
</tr>
<tr>
<td>2007</td>
<td>LMCRS</td>
<td>N/A</td>
<td>RTE</td>
</tr>
<tr>
<td>2008</td>
<td>LMCRS</td>
<td>N/A</td>
<td>RTE</td>
</tr>
<tr>
<td>2009</td>
<td>LMCRS</td>
<td>N/A</td>
<td>RTE</td>
</tr>
<tr>
<td>2010</td>
<td>LMCRS</td>
<td>N/A</td>
<td>MSE</td>
</tr>
</tbody>
</table>

LMCRS: Latex-Modified Cationic Rapid Set
LMCQS: Latex-Modified Cationic Quick Set
PASS - "Proprietary" Polymer-Modified Emulsion
MSE – Micro-surfacing Surfacing Emulsion
RTE - Rapid Traffic Emulsion - Polymer-Modified
Quality Control

<table>
<thead>
<tr>
<th>Year</th>
<th>Slurry Seal</th>
<th>Micro-Surfacing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aggregate</td>
<td>Emulsion</td>
</tr>
<tr>
<td>2000</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>2001</td>
<td>No Results</td>
<td>No Results</td>
</tr>
<tr>
<td>2002</td>
<td>Pass</td>
<td>Pass</td>
</tr>
</tbody>
</table>
| 2006 | No Results | No Results | No Results | Failing Residue
Failing Softening Pt.
Failing Torsional Recovery |
| 2007 | No Results | No Results | No Results | Failing Penetration
Failing Softening Pt.
Failing Torsional Recovery |
| 2008 | No Results | No Results | Failing L.A. Abrasion | Failing Torsional Recovery |
Impact of Construction Practice: Micro
Impact of Traffic Level: Micro
Impact of Traffic Level: Slurry

![Graph showing the impact of traffic level on PCI over age, years. The graph includes lines for different traffic levels such as A ELD13, A ELD14, A WLP1, A WLP2, A WLP3, A ELD1, D RCR1, D RCR4, and A ELD2. The y-axis represents PCI ranging from 0 to 100, and the x-axis represents age in years from 0 to 7.]
Impact of Pre-PCI: Micro
Impact of Pre-PCI: Slurry
Benefit Cost Ratio

<table>
<thead>
<tr>
<th>Location</th>
<th>Cape Seal</th>
<th>Effective Performance Life (yrs)</th>
<th>Unit Cost ($/yd²)</th>
<th>Benefit Cost Ratio (yr/$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truckee Meadows</td>
<td>Micro-surfacing</td>
<td>7.0</td>
<td>4.46</td>
<td>1.57</td>
</tr>
<tr>
<td></td>
<td>Slurry Seal</td>
<td>3.5</td>
<td>3.50</td>
<td>1.00</td>
</tr>
<tr>
<td>Incline Village</td>
<td>Micro-surfacing</td>
<td>5.0</td>
<td>4.46</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td>Slurry Seal</td>
<td>3.0</td>
<td>3.50</td>
<td>0.86</td>
</tr>
</tbody>
</table>
Micro-Cape Seal: 9yrs/Pre-PCI:34
Micro-Cape Seal: 6yrs/Pre-PCI: 56
Micro-Cape Seal: 1yr
FINDINGS

- The effective performance life of micro-surfacing cape seals is 7 years in the Truckee Meadows and 5 years in Incline Village.

- The effective performance life of slurry seal cape seals is 3.5 years in the Truckee Meadows and 3 years in Incline Village.

- The LCCA indicates that the micro-surfacing cape seal is more cost effective than the slurry seal cape seal at both locations of Truckee Meadows and Incline Village.
RECOMMENDATIONS

- Continue to use the micro-surfacing cape seal as a preventive maintenance treatment
- Conduct full mix designs and implement an effective QA testing program for the cape seal projects
- Implement an effective crack sealing program prior to the application of the cape seal treatment
- Investigate the various individual distresses on the existing pavement
THANK YOU FOR YOUR ATTENDANCE

Visit our websites at: www.wrsc.unr.edu

Contact Information:
Peter E. Sebaaly, psebaaly@unr.edu, 775-784-6565
Elie Y. Hajj, elieh@unr.edu, 775-784-1180