

Uniaxial Thermal Stress and Strain Test (UTSST)

2016 Pacific Coast Committee on Asphalt Specifications Seattle, May 11, 2016

Peter E. Sebaaly, PhD, PE Director Western Regional Superpave Center University of Nevada Reno (UNR)

Acknowledgement and Disclaimer

- The contents of this research effort are part of the overall effort in the Asphalt Research Consortium (ARC).
- The contents do not necessarily reflect the official views and policies of the Federal Highway Administration (FHWA).

Thermal Cracking in AC Pavements (Cont'd) Northern Nevada

Thermal Cracking in AC Pavements (Cont'd) Bishop, CA

Thermal Cracking in AC Pavements (Cont'd) Tucson, AZ

Thermal Cracking in AC Pavements (Cont'd) Average Temperature Ranges: Reno vs. Tucson

Graph of average and extreme temperature ranges by day for Reno, NV

Graph of average and extreme temperature ranges by day for Tucson, AZ.

RENO WFO, NEVADA (266791)

Period of Record Monthly Climate Summary

Period of Record : 05/01/1996 to 01/20/2015

TUCSON UNIV OF ARIZONA, ARIZONA (028815)

Period of Record Monthly Climate Summary

Period of Record : 9/ 1/1894 to 12/31/2005

	Jan	Feb	Mar	A	pr M	ay J	un Ju	ul A	ug S	ep C	Oct 1	Nov 1	Dec A	Annual		Jan	Feb	Mar	Apr	May J	un J	ful A	Aug S	Sep C	Oct 1	Nov I	Dec 1	Annua
Average Max. Temperature (F)	45.	7 4	8.3 :	56.6	61.2	72.4	82.3	92.9	90.7	82.2	67.6	54.4	44.8	66.6	Average Max. Temperature (F)	65.	5 68.9	9 74.3	82.1	90.7	99.8	100.1	97.9	95.2	85.9	74.3	66.2	83
Average Min. Temperature (F)	27.	6 2	9.1	33.5	37.0	45.7	53.6	61.6	59.9	53.0	42.5	33.3	26.9	42.0	Average Min. Temperature (F)	37.	6 40.2	2 44.0	49.8	57.5	66.8	73.9	72.4	66.9	54.9	43.8	38.1	53
Average Total Precipitation (in.)	1.2	3 0	.95 (0.62	0.57	0.44	0.52	0.20	0.21	0.26	0.65	0.66	1.37	7.68	Average Total Precipitation (in.)	0.8	9 0.84	4 0.76	0.39	0.18	0.27	2.02	2.16	1.16	0.75	0.77	0.97	11.1
Average Total SnowFall (in.)	7.	0	7.5	3.5	2.5	0.2	0.0	0.0	0.0	0.0	0.2	1.5	9.2	31.6	Average Total SnowFall (in.)	0.	3 0.2	2 0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0
Average Snow Depth (in.)		1	0	0	0	0	0	0	0	0	0	0	1	0	Average Snow Depth (in.)		0 0) (0	0	0	0	0	0	0	0	0	

Data Sources: <u>climateSpy.com</u>, and *Western Regional Climate Center*

Pavement Temperature Rates

Average and Hourly Warming and Cooling Temperature Rates in AC

---- Hourly Temperature

Pavement Temperature Rates (Cont'd)

Average and Hourly Warming and Cooling Temperature Rates in AC

Pavement Temperature Rates (Cont'd)

Measurements in AC at a Depth of 12.5 mm below pavement surface

Impact of Temperature on Binder Aging

Impact of Temperature on Binder Aging (Cont'd)

Impact of Temperature on Binder Aging (Cont'd)

Thermal Cracking in AC Pavements

- Thermal cracking can be addressed by:
 - Selecting the appropriate asphalt binder grade coupled with the proper rheological properties and aging characteristics.
 - Selecting the appropriate aggregate properties and gradation.
 - Assuring the proper mixture volumetric and properties.

Thermal Stress Restrained Specimen Test (TSRST)

- Originally developed as a part of SHRP.
 - Mixture specimen is started at an initial temperature then subjected to a temperature drop until fracture while height of the specimen is kept constant.
- Has been successfully utilized in pavement research to evaluate low temperature cracking properties of asphalt mixtures.
 - Initially published as AASHTO TP10 (currently dropped from the AASHTO standards).
 - European standard EN12697-46 (2012) to characterize asphalt mixtures for thermal cracking resistance.

Thermal Stress Restrained Specimen Test (TSRST)

- Limitations/Potential Concerns
 - Compaction of prismatic specimens.
 - Variation in thermal stress build-up between replicate samples.
 - Variation in fracture stress and fracture temperature.
- Implemented Enhancements \rightarrow UTSST
 - Sample geometry and preparation methods (cylindrical specimens/reduce edge effect).
 - Gluing technique (epoxy selection based on CTC and gluing jigs)
 - End platens and fixtures (reduce eccentricity)
 - Thermal strain measurements
 - Draft ASTM Standard (pending D04.26)

Test Procedure Specimen Preparation

- Four 57mm (2 ¼ in.) diam. × 134mm (5 ¼ in.) height specimens
 - Cored 90° from the axis of compaction of a SGC sample or a field core sample.

Online Video: http://www.unr.edu/wrsc/research/facilities/asphalt

Test Procedure (Cont'd) Loading Specimens into Testing Chamber

Test Procedure (Cont'd) Running the Test

- Start test at room temperature (typically 20°C)
- Apply thermal loading at 10°C/hour or another predetermined cooling rate through -40°C.

Test Procedure (Cont'd) Data Collection and Analysis

10 U 5 femperature (*C) Temperature (*C) Temp(°C) Modulus(2nd derivative of Eth Temp(°C) Fitted Stre Fitted Strain Temp(°C) Modulus (Stress (psi) 10.68208 26506.23 21.17321 0 0 Fracture -25.2043 0 310.4224 10.59881 35455.64 21.08995 -0.19216 1.57E-06 Crack Initi -23.539 890843.5 278.7748 10.51555 35422.5 21.00668 -0.37805 3.15E-06 Glassy Har -12.132 538465.1 91.24172 10.43229 35388.94 -30.7878 Vicous-Gli -0.72495 124665.4 14.33868 20.92342 -0.55777 4.72E-06 10.34903 35355.28 -7.65858 20.84016 -0.73143 6.3E-06 Viscous Sc 10.34903 35355.28 0.238129 10.26576 35321.83 15.28573 20.75689 -0.89913 7.88E-06 10.1825 35288.9 38.04537 20.67363 -1.06099 9.47E-06 10.09924 35256.82 60.62059 20.59037 -1.2171 1.11E-05 10.01597 35225.88 83.01162 20.50711 -1.36756 1.26E-05 9.93271 35196.41 105.2187 20.42384 -1.51249 1.42E-05 9.849448 35168.7 127.2421 20.34058 -1.65198 1.58E-05 9.766185 35143.05 149.082 20.25732 -1.78613 1.74E-05 9.682922 35119.78 170.7387 20.17405 -1.91504 1.9E-05 9.599659 35099.16 192.2124 20.09079 -2.0388 2.06E-05 9.516396 35081.51 213.5034 20.00753 -2.15752 2.22E-05 9.433133 35067.12 234.6118 19.92427 -2.27129 2.38E-05 9.34987 35056.26 255.5379 19.841 -2.3802 2.54E-05 9.266607 35049.24 276.282 19.75774 -2.48434 2.7E-05 9.183344 35046.33 296.8442 19.67448 -2.58382 2.87E-05 9.100081 35047.82 317.2248 19.59121 -2.67871 3.03E-05 9.016818 35053.99 337.4241 19.50795 -2.76912 3.19E-05 8.933555 35065.11 357.4422 19.42469 -2.85513 3.35E-05 8.850292 35081.47 377.2794 19.34142 -2.93682 3.51E-05 8.767029 35103.33 396.9358 19.25816 -3.01429 3.67E-05 8.683766 35130.96 416.4118 19.1749 -3.08762 3.84E-05 8.600503 35164.64 435.7076 19.09164 -3.15689 4E-05 19.00837 -3.2222 4.16E-05 8.51724 35204.62 454.8232 8.433977 35251.17 473.7591 18.92511 -3.28362 4.33E-05 8.350714 35304.55 492.5154 18.84185 -3.34123 4.495 35365.01 511.0923 18.75858 -3.395

- IDI XI Figure 6

Ele Edit View Insert Tools Desktop Window Hele

S Figure 7

Insert Tools Desktop Window Help

00245 4 2 2 2 2 2 4 - 5 1 1 1 - 0

- IDI XI

Test Description Uniaxial Thermal Stress and Strain Test (UTSST)

Test Description (Cont'd) Uniaxial Thermal Stress and Strain Test Results

Thermal Stress Build-up and Thermal Strain

Test Description (Cont'd) Data Analysis: Coeff. Of Thermal Contraction (CTC)

Test Description (Cont'd) Data Analysis: Calculation of Modulus

Test Description (Cont'd) Data Analysis: Modulus as a Function of Temperature

Test Description (Cont'd) Data Analysis: UTSST Resistance Index

Test Variability Prismatic versus Cylindrical Side Specimens

Test Variability Fracture Location

- Failure Plane/Breakage Face
 - Specimen alignment is critical such as with any tension test.
 - The new gluing jig/technique reduced this issue significantly.

Lab-Mix Lab-Compacted

Field-Mix Field-Compacted/Cores

Test Sensitivity

- Examples highlighting the test sensitivity to:
 - Long-term aging;
 - Air void level;
 - Asphalt binder content;
 - Aggregate mineralogy;
 - Asphalt binder modification;
 - Recycled materials.

Test Sensitivity (Cont'd) Effect of Aging

	8,000 -	CAL19I22_7.44_7%_0mo_60C	Ducucator	PG64-22 (7% Va)					
	7,000 -	CAL19122_7.44_7%_5110_60C	Property	0 M	3 M	6 M	9 M		
	6,000 -	CA = 0.20	Fracture Temp (°C)	-23.3	-18.2	-13.2	-7.7		
Modulus, E(UTSST) (MPa) 1	5,000 -	CA = 0.44	Fracture Stress (MPa)	2.4	2.4	2.2	1.6		
	4,000 -	CA = 0.59	Crack Initiation Temp, CIT (°C)	-22.3	-10.7	-4.8	-1.5		
	3,000 -	CA = 0.69	Crack Initiation Stress, CIS (MPa)	2.2	1.6	1.4	1.2		
	2,000 -		Glassy Hardening (°C)	-10.4	-2.0	+2.8	+7.5		
	1,000 -		Viscous-Glassy Transition (°C)	+1.2	+5.6	+8.1	+9.4		
	- 0 -3	30 -20 -10 0 10 20 30	UTSST Resistance Index	599	55	18	12		
		Temp(°C)							

Test Sensitivity (Cont'd) Effect of Aging

Test Sensitivity (Cont'd) Effect of Air Void Level

Test Sensitivity (Cont'd) Effect of Air Void Level

Test Sensitivity (Cont'd) Effect of Asphalt Binder Content & Aggregate Mineralogy

Test Sensitivity (Cont'd) Effect of Asphalt Binder Content & Aggregate Mineralogy

Temperature (°C)

Test Sensitivity (Cont'd) Effect of Asphalt Binder Modification

Test Sensitivity (Cont'd) Effect of Asphalt Binder Modification

Test Sensitivity (Cont'd) Effect of Recycled Materials

Slide 37

Lab to Field Correlation WesTrack Mixes

- Consistencies observed between lab and field aging
 - Example: WesTrack Sections (Diff. Binder and Aggs.)
 - Section 15 1995 [19 yrs field aging]
 - Sections 38 & 56 1997 [17 yrs field aging]

CR 112 Olmsted County, Minnesota Sections

• Five test sections were constructed using same aggregate gradation and four binders from different sources.

Section	Binder	400 € 350 → MN 1-1
MN 1-1	MIF PG 58-34 (Elvaloy modified) with 20% RAP	000 → MN 1-2 → MN 1-3 → MN 1-4 → MN 1-5
MN 1-2	MIF PG 58-34 (Elvaloy modified) without RAP	250 <u>intervention</u> 200
MN 1-3	PG 58-28 Canadian blend	P 150
MN 1-4	PG 58-28 Arab heavy/Arab medium/Kirkuk blend	Light Solution 100 50 50 50 50 50 50 50 50 50 50 50 50 5
MN 1-5	PG 58-28 Venezuelan blend	0 2004 2006 2008

CR 112 Olmsted County, Minnesota Sections (cont'd)

CR 112 Olmsted County, Minnesota Sections (cont'd)

CR 112 Olmsted County, Minnesota Sections (cont'd)

Lab to Field Correlation CR 112 and WesTrack

Summary and Conclusions Uniaxial Thermal Stress and Strain Test

- Test specimens obtained from SGC specimens or field cores.
 Orientation of specimens is preserved by subjecting tensile stresses perpendicular to compaction direction.
- Allow for the determination of:
 - CTC, fracture strength/temperature, Crack initiation stress, UTSST Resistance Index, or other thermo-viscoelastic properties.
- Direct tension test under thermal loading.
 - Full characterization of asphalt mixtures as a function of temperature (various thermal transition zones).
 - Cooling rate can be selected to simulate field conditions.

